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LESSON 8 

USEFUL FORMULAE 

8.1. A string of numbers separated by commas is called a sequence. Examples sequences 

are: 

8.1.1 All natural numbers:      1,2,3,4,… 

8.1.2 All squares from 5 onwards: 25, 36, 49, 64,… 

8.1.3 All odd cubes from – 3 upwards:  - 27, -1, 1, 27, 125,… 

The numbers in a sequence are called terms. Thus the third term in 8.1.3 is 49, for 

example.  

 

8.2.  How many terms are in the sequence 34, 35, 36, …….237? A neat way of answering 

the question is to include the numbers 1 to 33 in the sequence and then remove them! 

So the answer is 237 – 33 = 204. 

In general, 

 

  

 

If we include the m - 1 numbers 1, 2, 3,  …(m -1) in this sequence and remove them, we 

deduce that the sequence has n - (m – 1) = n – m + 1 terms.   

 

8.3. 

 

 

See lesson 5.1 for an explanation. This is the formula for the sum of the first n natural 

numbers. It is also the nth triangular number. 

 

8.4. 

 

Proof: Let us check whether the claim is true for the first few values of n.  

8.2 There are n – m + 1 numbers between m and n , both inclusive. That 

is, the sequence m, m + 1, m + 2, ……,n has n – m + 1 elements 

  

 

The sum of the first n odd numbers is n2. 

 

( 1)
1 2 3 ...

2

n n
n


     
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1= 1 

1 + 3 = 4 = 22 

1 + 3 + 5 = 9 = 32 

1 + 3 + 5 + 7 = 16 = 42 

 

This test , of course, does not prove the statement. It only verifies it for the first four 

values of n. How can we be certain that if we add the first million odd numbers, for 

example, we will get million squared, that is, 1012? 

 

So, we have to verify the claim for every natural number n. 

Method 1:  

Let x be the sum. That is,  x = 1 + 3 + 5 + …. to n terms. Then 

 

x = (2 – 1) + (4 – 1) + (6 – 1) + …..  n brackets 

   = (2 + 4 + 6 +….) – ( 1 + 1 + 1+….) where each bracket has n terms 

   = 2 ( 1 + 2 + 3+…) – n 

   =
( 1)

2[ ]
2

n n
n


  from (2) above 

 
2

2

n n n

n

  


 

Method 2: 

In the sum x = 1 + 3 + 5 + …., insert the first n even numbers and subtract them: 

 

x = (1  + 2 + 3 + 4 + 5 + 6 +….)  – (2 + 4 + 6  +….) 

The first bracket is the sum of the first 2n natural numbers and, by problem 2, it is equal 

to 
(2 )(2 1)

.
2

n n 
 The second bracket is, as before, 2 times the sum of the first n natural 

numbers, so it is equal to 
( 1)

2. .
2

n n 
Substituting: 

2 2

2

2 (2 1) ( 1)
2.

2 2

2

n n n n
x

n n n n

n

 
 

   



 

 

Method 3: 

If you check to see how the formula for the sum of the first n natural numbers was derived, 

(Lesson 5.1.1, problem 2), you will find we resorted to a neat trick. We wrote the sum 
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backwards and added. We try the same trick here. Note first that the nth term (that is, the last 

term)  in  

 x = 1 + 3 + 5 + …., 

 is 2n – 1.  The “backward” sum is therefore 

x = (2n – 1) + (2n – 3) +…..+ 5 + 3 + 1 

So  

x + x = 2n + 2n + 2n + …….(n terms) 

= n(2n) 

Hence 2x = 2n2 and x = n2 

8.5 Arithmetic Sequences: 

The three sequences, namely, the natural numbers, the odd numbers and the even 

 numbers all have a common property.  

Each term in the sequence from the second one onwards, can be obtained from the 

 previous term by adding a fixed number. 

Another way of saying this is : the difference between consecutive terms (taken in the 

 same “direction” is always the same. 

Such a sequence is called an arithmetic sequence. 

8.5.1   Let a be the first term of a sequence which has the property that every term is 

 obtained from the previous one by adding a fixed number d. Then the nth term of  the 

 sequence is ( 1)a n d  . 

 

 The first term is a, the second term is a + d (adding d to a), the third term is a + 2d  

 (adding d to a +d), the fourth term is a + 3d (adding d to a + 2d). Proceeding in this way, the nth 

 term is ( 1) .a n d    

 8.5.2    The sum of the first n terms of such a sequence is sum [2 ( 1) ].
2

n
a n d   that is: 

 ( ) ( 2 ) ......to  terms = [2 ( 1) ].
2

n
a a d a d n a n d        

Proof:  Let ( ) ( 2 ) ......to  terms     x a a d a d n  

Then  ( .... ) (0 1 2 3 ...)           x a a a a d  
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where each bracket contains n terms. Which means that the second bracket is the sum 

of the first n – 1 natural numbers. 

( .... ) (0 1 2 3 ...)

[(1 2 3 ...( 1)]

( 1)

2

 = [2 ( 1) ].
2

x a a a a d

na n d

n n
na d

n
a n d

         

     


 

 

 

 

8.5.3 Examples 

1. Find  

(a) the 300th term of the arithmetic sequence 
35 17 1

, 13, , 4, ,....
2 2 2

     

(b) the value of 
35 17 1

13 4 ....
2 2 2

      if there are 200 terms in this sum. 

Solution:  

(a) The first term of the arithmetic sequence is 
35

2
a    and the value of d is 

35 9
13

2 2
d     .  (We can check that each of the given terms is obtained by adding 

9

2
of 

the previous term).  The 300th term (so n = 300) is 

 
35 9

( 1) (299)( ) 1328.
2 2

a n d       

 

(b) The terms of the sum are 
35 26 17 8 1

, , , , ,....
2 2 2 2 2

    The first term is 
35

2
  and 

each term is obtained from the previous one by adding the same number, namely, 

9

2
. 

So, the above formula may be used, with 
35

2
a    , 

9

2
d   and n = 200. The required 

sum is 

200 9
[2 ( 1) ] [ 35 (200 1) ]

2 2 2

86050

n
a n d

 
       

 


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8.6 Sums of squares of natural numbers 

We have seen that there is a quick way of calculating the sum of the first n natural 

numbers. Simply use the formula 
( 1)

1 2 3 ...
2

n n
n


    .  What about the squares of 

natural numbers? Or cubes?    

 

Are there formulae for the sum of the squares, or, for that matter the sums of the cubes of the 

first n natural numbers? 

 

Let’s start with the squares and see whether there is a a pattern : 

 
2

2 2

2 2 2

2 2 2 2

2 2 2 2 2

1 1

1 2 1 4 5

1 2 3 5 9 14

1 2 3 4 14 16 30

1 2 3 4 5 30 25 55



   

    

     

      

 

 

At first glance, there does not appear to be any way of predicting what the next sum is going to 

be: 1, 5, 14, 30, 55, ?? If we divide these numbers by the sum of the associated numbers, we get 

1 5 14 30 55
, , , ,

1 3 6 10 15
 

Which when simplified become 

5 7 11
1. , ,3,

3 3 3
 and this is just the same as 

3 5 7 9 11
. , , ,

3 3 3 3 3
, and here there Is a clear pattern! 

Summarising, it would appear that; 
2 2 2 21 2 3 ... 2 1

1 2 3 ... 3

n n

n

    


   
 

The denominator on the left is, as we have seen, equal to 
( 1)

2

n n 
 so we suspect that: 

2 2 2 21 2 3 ... n    =
( 1) 2 1 ( 1)(2 1)

2 3 6

n n n n n n     
  

  
 

We cannot be certain. We know only that it works for n = 1, 2, 3,4 and 5. So how we can verify 

that that the formula holds for every sum of n squares? 

 

There is a way.  A very clever way. We start by making the following observation: 

 
3 3 3 2 3 2

3 3 2

( 1) 3 3 1 3 3 1

( 1) 3 3 1...............(1)

         

    

k k k k k k k k

k k k k

 

Now take any natural number n.  
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Make n substitutions for k in the equation (1), namely , k = 1, k = 2, k = 3, ….k = n. 

 
3 3 2

3 3 2

3 3 2

3 3 2

3 3 2

2 1 3.1 3.1 1

3 2 3.2 3.2 1

4 3 3.3 3.3 1

5 4 3.4 3.4 1.

.

.

( 1) 3 3 1n n n n

   

   

   

   

    

 

Now add these n equations. All but two terms disappear on the left hand side. On the right, 

remove 3 as a common factor from the first two columns and note that the n ones, sum to n. 

 

3 2 2 2 2 2 2

3 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

( 1)
3 3 1 1 3(1 2 3 4 ... ) 3.

2

2( 3 3 ) 6(1 2 3 4 ... ) (3 3 2)

6(1 2 3 4 ... ) (2 6 6 3 5)

6(1 2 3 4 ... ) ( 1)(2 1)

( 1)(2 1)
(1 2 3 4 ... )

6

n n
n n n n n

n n n n n n

n n n n n

n n n n

n n n
n


           

          

         

       

 
     

 

 

8.6 

   

8.7 Sums of cubes of natural numbers 

The sum of the cubes is even more interesting, and surprising. Let’s see whether there is a 

pattern. 

3

3 3

3 3 3

3 3 3 3

3 3 3 3 3

1 1

1 2 1 8 9

1 2 3 9 27 36

1 2 3 4 36 64 100

1 2 3 4 5 100 125 225



   

    

     

      

 

Here the sums show a clear pattern: 2 2 2 2 21 ,3 ,6 ,10 ,15  which is just 
2 2 2 2 21 ,(1 2) ,(1 2 3) ,( 2 3 4) ,(1 2 3 4 5)           

Summarising, we have the fascinating formula 

8.7   

2 2 2 2 2 ( 1)(2 1)
1 2 3 4 ...

6

n n n
n

 
       

2

3 3 3 3 3 2 ( 1)
1 2 3 4 ... (1 2 3 4 ... )

2

n n
n n

 
            

   
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As before, we cannot be certain that the formula works for all possible values on n. The proof is identical 

to the one for squares: start by simplifying 4 4( 1) .k k   

8.8 Geometric sequences 

Consider the sequences: 

1, 2, 4, 8, 16,…… 

10, 100, 1000, 10000, … 

3 2 4 8
, , , ,....

5 5 15 45
   

They all have the same property: each term from the second term onwards can be obtained from the 

previous term by multiplying it by a fixed number.  The fixed number in the first case is 2, in the second, 

10, and in the third 
2

.
3

 . 

Alternately, the ratio of consecutive terms (taken in the same direction), is the same throughout the 

sequence.  

 

Such a sequence is called a geometric sequence 

 

8.8.1 The sum of the first n terms of the geometric sequence 2 31, , , ,....r r r is 
1

1

nr

r




. 

Proof: Let x be equal to the sum. The last term on the right is 1nr  . So  

2 3 11 ....  nx r r r r        

Multiply both sides by r and subtract: 

2 3 1

2 3 1

2 3 1

1 ....  

....

1

(1 ) 1

1

1

1 1
1 ....  

1 1







     

     

  

  






 
      

 

n

n n

n

n

n

n n
n

x r r r r

rx r r r r r

x rx r

x r r

r
x

r

r r
r r r r

r r

 

Multiplying both sides by 1 – r, we obtain a factorisation of 1 - rn 

8.8.2 
2 3 11 (1 )(1 ... )n nr r r r r r        
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   8.9 Other Useful Equations: 

The following are stated without proof – they are easy to check – and should be committed to 

memory. 

3 3 3 2 2 28.9.1 3 ( )( )          x y z xyz x y z x y z xy yz xz  

2 2 2 28.9.2 ( ) 2 2 2       x y z x y z xy yz zx  

2 2 2 2 2 21
8.9.3 ( ) [( ) ( ) ( ) ]

2
          x y z xy yz zx x y y z z x  

1 2 2 18.9.4 ( )( .... )        n n n n n na b a b a a b ab b  

1 2 2

0 1 28.9.5 ( ) ....      n n n n n

na b c a c a b c a b c b  where 
!

( )! !
r

n n
c

r n r r

 
  

 
. 

3 3 2 2 3

4 4 3 2 2 3 4

8.9.6 ( ) 3 3

8.9.7 ( ) 4 6 4

    

     

a b a a b ab b

a b a a b a b ab b

 

8.10 The AG (Arithmetic-geometric inequality) 

 

 

 

 

This follows from the fact that  

2 2

2

0 ( ) ( ) 4 . Hence

 so 
2 2

a b a b ab

a b a b
ab ab

    

  
  

 

 

With equality if and only if 2( ) 0a b  that is , a = b. 

In general, we have that for any n positive numbers 1 2 3, , , ... na a a a : 

1 2 3
1 2 3

, ...
...n

n

a a a a
a a a a

n

   
 

 
 

The arithmetic mean, that is, the average, of two non-negative numbers  a and b can 

never be less than their geometric mean. That is, for any two numbers  a and b,  

2

a b
ab


 Moreover, they equal if and only if a = b 
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with equality if and only if 1 2 3 ... na a a a   . 


